
Macroeconomic Drivers of S&P 500 Returns: A Boruta-Selected
Regression Analysis

Emil Blaignan, Robert Sellman, Sean Eizadi

2025-05-29

Contents

Introduction 2

1. Variable Selection 3

1.1 Quantitative Predictors via Boruta . 3

1.1.1 Final Variable Selection from Boruta Results . 5

1.2 Selection of Factor Variables . 6

2. Descriptive Analysis 8

2.1 Data Quality Assessment . 8

2.2 Outlier Detection and Treatment . 8

2.3 Univariate Distributional Analysis . 10

2.4 Distribution Plots with Fitted Normal Curves . 11

2.5 Normality Assessment via Q-Q Plots . 13

2.6 Transformation Analysis . 14

2.7 Correlation Analysis . 15

2.8 Factor Variable Analysis . 17

2.9 Time Series Visualization . 18

2.10 Descriptive Analysis Summary . 20

3. Model Building 20

3.1 Model Specifications and Initial Setup . 21

3.2 Initial Model Comparison . 22

3.3 Testing for Interaction Terms . 23

3.3.1 Continuous Variable Interactions . 23

3.3.2 Factor Variable Interactions . 24

3.3.3 Interaction Analysis and Multicollinearity Concerns . 24

1

3.4 Model Diagnostic & Plots . 25

3.4.1 Normality of Residuals . 25

3.4.2 Heteroskedasticity Analysis . 27

3.4.3 Autocorrelation Testing . 29

3.4.4 Model Specification Testing . 30

3.4.5 Multicollinearity Analysis . 31

3.4.6 Influential Observations Analysis . 33

3.6 Cross-Validation Analysis . 36

3.6.1 Time Series Cross-Validation Setup . 36

3.6.2 Cross-Validation Results . 37

3.7 Bootstrap Analysis for Coefficient Stability . 38

3.7.1 Bootstrap Implementation . 38

3.7.2 Bootstrap Histograms . 39

3.8 Final Model Selection . 41

3.8.1 Comprehensive Comparison . 41

3.8.2 Model Selection Decision . 41

3.9 Marginal Effects Analysis . 42

3.9.1 Theoretical Foundation . 43

3.9.2 Marginal Effects at Mean Values . 43

3.9.3 Average Marginal Effects Using Margins Package . 44

3.9.4 Marginal Effects Across Variable Ranges . 45

4. Conclusion 47

4.1 Summary of Overall Findings . 47

4.2 Explicit Answers to Research Questions . 47

4.3 Main Conclusions and Policy Implications . 48

4.4 Model Limitations and Future Research . 49

4.5 Practical Recommendations . 49

References 49

Introduction

This project identifies key macroeconomic predictors of S&P 500 returns using Boruta feature selection and
multiple regression analysis. Our primary research questions are:

• Which macroeconomic indicators (e.g., yield curve, inflation, volatility) are most statistically significant
in predicting S&P 500 returns?

• How do factor variables (e.g., recession dummies, Fed policy indicators) improve model fit?

2

• What are the economic magnitudes and interpretations of these relationships?

Data Sources: We utilize quantitative data from FRED (Federal Reserve Economic Data) spanning January
2000 to March 2025, including over 15 initial macroeconomic predictors. Factor variables include the NBER
recession indicator and Fed tightening cycle dummies. Our target variable is monthly S&P 500 returns
calculated from Yahoo Finance data.

1. Variable Selection

1.1 Quantitative Predictors via Boruta

We applied the Boruta algorithm to identify macroeconomic variables most strongly associated with monthly
S&P 500 returns. Boruta uses a random forest classifier to assess feature importance, comparing real variables
against randomly permuted “shadow” features.

Load processed data
cleaned_data <- read_csv("data/processed_data.csv")
cat("Dataset dimensions:", nrow(cleaned_data), "observations,", ncol(cleaned_data), "variables\n")

Dataset dimensions: 303 observations, 26 variables

Convert dates to proper format
if(is.numeric(cleaned_data$date)) {
cleaned_data$date <- as.Date(cleaned_data$date, origin = "1970-01-01")

} else if(is.character(cleaned_data$date)) {
cleaned_data$date <- as.Date(cleaned_data$date)

}

cat("Time period:", as.character(min(cleaned_data$date)), "to", as.character(max(cleaned_data$date)), "\n")

Time period: 2000-01-01 to 2025-03-01

Prepare data for Boruta
boruta_data <- cleaned_data %>%
select(-date, -USREC, -tightening) %>%
select(where(is.numeric))

Create formula for Boruta
predictors <- names(boruta_data)[names(boruta_data) != "monthly_return"]
formula_str <- paste("monthly_return ~", paste(predictors, collapse = " + "))
boruta_formula <- as.formula(formula_str)

Run Boruta feature selection
set.seed(123)
boruta_results <- Boruta(boruta_formula, data = boruta_data, doTrace = 1, maxRuns = 100)

print(boruta_results)

Boruta performed 99 iterations in 16.14582 secs.
15 attributes confirmed important: AAA, BAA, close_price, CPIAUCSL,

3

DTWEXM and 10 more;
3 attributes confirmed unimportant: BAA_AAA_spread, GDPC1, USSLIND;
4 tentative attributes left: CPI_YoY, M2_YoY, T10Y2Y, T10Y3M;

Plot results
par(mar = c(8, 4, 4, 2))
plot(boruta_results, main = "Boruta Feature Selection Results",

cex.axis = 0.8, las = 2)

sh
ad

ow
M

in

sh
ad

ow
M

ea
n

U
S

S
LI

N
D

B
A

A
_A

A
A

_s
pr

ea
d

G
D

P
C

1

M
2_

Yo
Y

sh
ad

ow
M

ax

T
10

Y
2Y

T
10

Y
3M

C
P

I_
Yo

Y

IN
D

P
R

O
_Y

oY

D
T

W
E

X
M

cl
os

e_
pr

ic
e

T
B

3M
S

U
N

R
AT

E

C
P

IA
U

C
S

L

M
2S

L

F
E

D
F

U
N

D
S

P
P

IA
C

O

G
S

10

PA
Y

E
M

S

B
A

A

A
A

A

IN
D

P
R

O

V
IX

C
LS

−5

0

5

10

15

20

Boruta Feature Selection Results

Attributes

Im
po

rt
an

ce

Extract selected attributes
important_vars <- getSelectedAttributes(boruta_results, withTentative = FALSE)
cat("\nAll important variables selected by Boruta:\n")

##
All important variables selected by Boruta:

print(important_vars)

[1] "INDPRO_YoY" "close_price" "DTWEXM" "VIXCLS" "M2SL"
[6] "PAYEMS" "UNRATE" "INDPRO" "PPIACO" "CPIAUCSL"
[11] "FEDFUNDS" "AAA" "BAA" "TB3MS" "GS10"

Get importance statistics
boruta_stats <- attStats(boruta_results)
confirmed_vars <- boruta_stats[boruta_stats$decision == "Confirmed",]
confirmed_vars <- confirmed_vars[order(confirmed_vars$medianImp, decreasing = TRUE),]
cat("Top variables by importance:\n")

4

Top variables by importance:

print(head(confirmed_vars, 10))

meanImp medianImp minImp maxImp normHits decision
VIXCLS 18.397394 18.332012 14.966918 21.138260 1.0000000 Confirmed
INDPRO 6.121445 6.036140 4.545975 8.172088 1.0000000 Confirmed
AAA 5.789249 5.809857 3.123900 7.109305 0.9696970 Confirmed
BAA 5.806439 5.744628 3.329359 8.298825 0.9696970 Confirmed
PAYEMS 4.867993 4.912990 3.341382 6.768483 0.9494949 Confirmed
GS10 4.805295 4.833190 1.927242 6.639068 0.9292929 Confirmed
PPIACO 4.756258 4.751176 2.759210 6.468995 0.9292929 Confirmed
FEDFUNDS 4.732046 4.732814 3.311243 6.264123 0.9393939 Confirmed
M2SL 4.668623 4.603735 2.946968 6.178155 0.9090909 Confirmed
CPIAUCSL 4.567735 4.587704 2.693736 5.825008 0.8787879 Confirmed

1.1.1 Final Variable Selection from Boruta Results

From Boruta’s confirmed important variables, we selected the top five using the following criteria:

1. Highest median importance scores from the Boruta algorithm
2. Economic interpretability and theoretical grounding

3. Representing different economic dimensions (sentiment, real activity, credit, inflation, monetary policy)
4. Avoiding severe multicollinearity among selected predictors

Select top 5 based on importance and economic theory
selected_vars <- c("VIXCLS", "INDPRO", "AAA", "CPIAUCSL", "FEDFUNDS")
cat("\nSelected variables for analysis:\n")

##
Selected variables for analysis:

Display importance scores
for(i in 1:length(selected_vars)) {
var <- selected_vars[i]
imp_score <- ifelse(var %in% rownames(confirmed_vars),

round(confirmed_vars[var, "medianImp"], 3), "N/A")
cat(sprintf("%d. %s (Importance: %s)\n", i, var, imp_score))

}

1. VIXCLS (Importance: 18.332)
2. INDPRO (Importance: 6.036)
3. AAA (Importance: 5.81)
4. CPIAUCSL (Importance: 4.588)
5. FEDFUNDS (Importance: 4.733)

Our final selection represents key macroeconomic themes:

1. VIXCLS – CBOE Volatility Index (investor risk sentiment)

5

2. INDPRO – Industrial Production Index (real economic activity)

3. AAA – Yield on AAA-rated corporate bonds (credit conditions)
4. CPIAUCSL – Consumer Price Index (inflation pressures)
5. FEDFUNDS – Federal Funds Rate (monetary policy stance)

1.2 Selection of Factor Variables

We evaluated two binary indicators based on economic theory:

• USREC: NBER recession indicator (1 = recession period)
• tightening: Fed tightening dummy (1 = FEDFUNDS > lagged value)

Test significance of recession indicator
recession_test <- t.test(
cleaned_data$monthly_return[cleaned_data$USREC == 1],
cleaned_data$monthly_return[cleaned_data$USREC == 0]

)

Test significance of Fed tightening dummy
tightening_test <- t.test(
cleaned_data$monthly_return[cleaned_data$tightening == 1],
cleaned_data$monthly_return[cleaned_data$tightening == 0]

)

cat("Recession Indicator T-Test Results:\n")

Recession Indicator T-Test Results:

print(recession_test)

##
Welch Two Sample t-test
##
data: cleaned_data$monthly_return[cleaned_data$USREC == 1] and cleaned_data$monthly_return[cleaned_data$USREC == 0]
t = -1.2482, df = 28.149, p-value = 0.2222
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.05308317 0.01287935
sample estimates:
mean of x mean of y
-0.014345378 0.005756531

cat("\nFed Tightening Indicator T-Test Results:\n")

##
Fed Tightening Indicator T-Test Results:

print(tightening_test)

6

##
Welch Two Sample t-test
##
data: cleaned_data$monthly_return[cleaned_data$tightening == 1] and cleaned_data$monthly_return[cleaned_data$tightening == 0]
t = -1.3109, df = 300.94, p-value = 0.1909
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.016512500 0.003308699
sample estimates:
mean of x mean of y
0.0001948923 0.0067967930

Visualize factor variables
par(mfrow = c(1, 2), mar = c(5, 4, 4, 2))
boxplot(monthly_return ~ USREC, data = cleaned_data,

main = "S&P 500 Returns by Recession Status",
xlab = "Recession (1=Yes, 0=No)", ylab = "Monthly Return",
col = c("lightblue", "salmon"))

boxplot(monthly_return ~ tightening, data = cleaned_data,
main = "S&P 500 Returns by Fed Tightening",
xlab = "Tightening Cycle (1=Yes, 0=No)", ylab = "Monthly Return",
col = c("lightgreen", "orange"))

0 1

−
0.

15
−

0.
05

0.
05

0.
15

S&P 500 Returns by Recession Status

Recession (1=Yes, 0=No)

M
on

th
ly

 R
et

ur
n

0 1

−
0.

15
−

0.
05

0.
05

0.
15

S&P 500 Returns by Fed Tightening

Tightening Cycle (1=Yes, 0=No)

M
on

th
ly

 R
et

ur
n

par(mfrow = c(1, 1))

Results: Neither test produced statistically significant results at conventional levels (p = 0.22 for USREC;
p = 0.19 for tightening). However, we retained both factors based on strong theoretical relevance.

7

2. Descriptive Analysis

2.1 Data Quality Assessment

Define analysis variables
factor_vars <- c("USREC", "tightening")
target_var <- "monthly_return"

Create working dataset
analysis_data <- cleaned_data %>%
select(date, all_of(selected_vars), all_of(factor_vars), all_of(target_var))

Check for missing values
missing_summary <- analysis_data %>%
summarise(across(everything(), ~sum(is.na(.)))) %>%
pivot_longer(everything(), names_to = "variable", values_to = "missing_count") %>%
mutate(missing_pct = (missing_count / nrow(analysis_data)) * 100) %>%
arrange(desc(missing_count))

cat("Missing Values Summary:\n")

Missing Values Summary:

print(missing_summary)

A tibble: 9 x 3
variable missing_count missing_pct
<chr> <int> <dbl>
1 date 0 0
2 VIXCLS 0 0
3 INDPRO 0 0
4 AAA 0 0
5 CPIAUCSL 0 0
6 FEDFUNDS 0 0
7 USREC 0 0
8 tightening 0 0
9 monthly_return 0 0

Missing Data Handling: Our preprocessed dataset contains no missing values. Any missing values en-
countered during preprocessing were addressed through median imputation.

2.2 Outlier Detection and Treatment

Function to detect outliers using IQR method
detect_outliers <- function(x) {
Q1 <- quantile(x, 0.25, na.rm = TRUE)
Q3 <- quantile(x, 0.75, na.rm = TRUE)
IQR <- Q3 - Q1
lower <- Q1 - 1.5 * IQR

8

upper <- Q3 + 1.5 * IQR
return(x < lower | x > upper)

}

Outlier summary for numeric variables
outlier_summary <- analysis_data %>%
select(all_of(c(selected_vars, target_var))) %>%
summarise(across(everything(), ~sum(detect_outliers(.), na.rm = TRUE))) %>%
pivot_longer(everything(), names_to = "variable", values_to = "outlier_count") %>%
mutate(outlier_pct = (outlier_count / nrow(analysis_data)) * 100) %>%
arrange(desc(outlier_count))

cat("Outlier Summary (using IQR method):\n")

Outlier Summary (using IQR method):

print(outlier_summary)

A tibble: 6 x 3
variable outlier_count outlier_pct
<chr> <int> <dbl>
1 VIXCLS 11 3.63
2 monthly_return 8 2.64
3 AAA 1 0.330
4 INDPRO 0 0
5 CPIAUCSL 0 0
6 FEDFUNDS 0 0

Apply winsorization to monthly returns
analysis_data <- analysis_data %>%
mutate(
monthly_return_original = monthly_return,
monthly_return = case_when(
monthly_return > quantile(monthly_return, 0.99, na.rm = TRUE) ~
quantile(monthly_return, 0.99, na.rm = TRUE),

monthly_return < quantile(monthly_return, 0.01, na.rm = TRUE) ~
quantile(monthly_return, 0.01, na.rm = TRUE),

TRUE ~ monthly_return
)

)

cat("\nWinsorization applied to monthly_return at 1% and 99% percentiles.\n")

##
Winsorization applied to monthly_return at 1% and 99% percentiles.

Outlier Treatment: We winsorized S&P 500 returns at the 1st and 99th percentiles to mitigate the impact
of extreme market events while preserving the overall distribution structure.

9

2.3 Univariate Distributional Analysis

Generate summary statistics
numeric_vars <- c(selected_vars, target_var)
summary_stats <- analysis_data %>%
select(all_of(numeric_vars)) %>%
pivot_longer(everything(), names_to = "variable", values_to = "value") %>%
group_by(variable) %>%
summarise(
n = n(),
mean = mean(value, na.rm = TRUE),
median = median(value, na.rm = TRUE),
sd = sd(value, na.rm = TRUE),
min = min(value, na.rm = TRUE),
max = max(value, na.rm = TRUE),
skewness = moments::skewness(value, na.rm = TRUE),
kurtosis = moments::kurtosis(value, na.rm = TRUE),
.groups = 'drop'

)

kable(summary_stats, digits = 3, caption = "Summary Statistics for Analysis Variables")

Table 1: Summary Statistics for Analysis Variables

variable n mean median sd min max skewness kurtosis
AAA 303 4.773 4.880 1.265 2.140 7.990 0.253 2.707
CPIAUCSL 303 230.806 229.918 39.003 169.300 319.775 0.503 2.587
FEDFUNDS 303 1.943 1.240 2.026 0.050 6.540 0.800 2.197
INDPRO 303 97.327 98.724 5.018 84.675 104.220 -0.584 2.208
VIXCLS 303 19.931 17.940 7.915 9.510 59.890 1.721 7.261
monthly_return 303 0.004 0.009 0.042 -0.109 0.106 -0.346 3.223

Generate summary statistics for factor variables
factor_vars <- c("USREC", "tightening")
factor_summary <- analysis_data %>%
select(all_of(factor_vars)) %>%
pivot_longer(everything(), names_to = "variable", values_to = "value") %>%
group_by(variable, value) %>%
summarise(count = n(), .groups = 'drop') %>%
group_by(variable) %>%
mutate(
percentage = round((count / sum(count)) * 100, 2),
interpretation = case_when(
variable == "USREC" & value == 1 ~ "Recession periods",
variable == "USREC" & value == 0 ~ "Non-recession periods",
variable == "tightening" & value == 1 ~ "Fed tightening periods",
variable == "tightening" & value == 0 ~ "Non-tightening periods",
TRUE ~ as.character(value)

)
) %>%
arrange(variable, desc(value))

10

kable(factor_summary,
digits = 2,
caption = "Summary Statistics for Factor Variables",
col.names = c("Variable", "Value", "Count", "Percentage (%)", "Interpretation"))

Table 2: Summary Statistics for Factor Variables

Variable Value Count Percentage (%) Interpretation
USREC 1 28 9.24 Recession periods
USREC 0 275 90.76 Non-recession periods
tightening 1 133 43.89 Fed tightening periods
tightening 0 170 56.11 Non-tightening periods

2.4 Distribution Plots with Fitted Normal Curves

Create histograms with density curves and fitted normal distributions
create_histogram_plots <- function(data, vars) {
plots <- list()

for(var in vars) {
p <- ggplot(data, aes_string(x = var)) +
geom_histogram(aes(y = ..density..), bins = 30, fill = "lightblue",

alpha = 0.7, color = "black") +
geom_density(color = "red", size = 1, alpha = 0.8) +
stat_function(fun = dnorm,

args = list(mean = mean(data[[var]], na.rm = TRUE),
sd = sd(data[[var]], na.rm = TRUE)),

color = "blue", size = 1, linetype = "dashed") +
labs(title = paste("Distribution of", var),

subtitle = "Red = Actual, Blue = Normal",
x = var, y = "Density") +

theme_minimal() +
theme(plot.title = element_text(size = 10),

plot.subtitle = element_text(size = 8))

plots[[var]] <- p
}

return(plots)
}

Generate and display histogram plots
hist_plots <- create_histogram_plots(analysis_data, numeric_vars)

grid.arrange(grobs = hist_plots[1:3], ncol = 3, top = "Distribution Analysis - Part 1")

11

0.00

0.02

0.04

0.06

0.08

20 40 60
VIXCLS

D
en

si
ty

Red = Actual, Blue = Normal

Distribution of VIXCLS

0.00

0.05

0.10

0.15

85 90 95 100 105
INDPRO

D
en

si
ty

Red = Actual, Blue = Normal

Distribution of INDPRO

0.0

0.1

0.2

0.3

0.4

0.5

2 4 6 8
AAA

D
en

si
ty

Red = Actual, Blue = Normal

Distribution of AAA

Distribution Analysis − Part 1

grid.arrange(grobs = hist_plots[4:6], ncol = 3, top = "Distribution Analysis - Part 2")

0.000

0.005

0.010

0.015

200 250 300
CPIAUCSL

D
en

si
ty

Red = Actual, Blue = Normal

Distribution of CPIAUCSL

0.0

0.2

0.4

0.6

0.8

0 2 4 6
FEDFUNDS

D
en

si
ty

Red = Actual, Blue = Normal

Distribution of FEDFUNDS

0

4

8

12

−0.10 −0.05 0.00 0.05 0.10
monthly_return

D
en

si
ty

Red = Actual, Blue = Normal

Distribution of monthly_return

Distribution Analysis − Part 2

12

2.5 Normality Assessment via Q-Q Plots

Create Q-Q plots for normality assessment
create_qq_plots <- function(data, vars) {
plots <- list()

for(var in vars) {
p <- ggplot(data, aes_string(sample = var)) +
stat_qq() +
stat_qq_line(color = "red") +
labs(title = paste("Q-Q Plot:", var),

subtitle = "Points should follow red line for normality") +
theme_minimal() +
theme(plot.title = element_text(size = 10),

plot.subtitle = element_text(size = 8))

plots[[var]] <- p
}

return(plots)
}

Generate and display QQ plots
qq_plots <- create_qq_plots(analysis_data, numeric_vars)

grid.arrange(grobs = qq_plots[1:3], ncol = 3, top = "Q-Q Plot Analysis - Part 1")

0

20

40

60

−3 −2 −1 0 1 2 3
x

y

Points should follow red line for normality

Q−Q Plot: VIXCLS

80

90

100

110

−3 −2 −1 0 1 2 3
x

y

Points should follow red line for normality

Q−Q Plot: INDPRO

2

4

6

8

−3 −2 −1 0 1 2 3
x

y

Points should follow red line for normality

Q−Q Plot: AAA

Q−Q Plot Analysis − Part 1

13

grid.arrange(grobs = qq_plots[4:6], ncol = 3, top = "Q-Q Plot Analysis - Part 2")

150

200

250

300

350

−3 −2 −1 0 1 2 3
x

y

Points should follow red line for normality

Q−Q Plot: CPIAUCSL

−5

0

5

10

−3 −2 −1 0 1 2 3
x

y

Points should follow red line for normality

Q−Q Plot: FEDFUNDS

−0.10

−0.05

0.00

0.05

0.10

−3 −2 −1 0 1 2 3
x

y

Points should follow red line for normality

Q−Q Plot: monthly_return

Q−Q Plot Analysis − Part 2

2.6 Transformation Analysis

Identify variables requiring transformation based on skewness and visual inspection
transform_candidates <- summary_stats %>%
filter(abs(skewness) > 0.5, variable != "monthly_return") %>%
pull(variable)

cat("Variables with |skewness| > 0.5 requiring transformation:\n")

Variables with |skewness| > 0.5 requiring transformation:

print(transform_candidates)

[1] "CPIAUCSL" "FEDFUNDS" "INDPRO" "VIXCLS"

Table 3: Transformation Options and Selection for Candidate Vari-
ables

Variable Transformation Type Transformation Detail Skewness Chosen
CPIAUCSL Original None 0.503 FALSE
CPIAUCSL Log log(x) 0.180 TRUE

14

Variable Transformation Type Transformation Detail Skewness Chosen
CPIAUCSL Square Root sqrt(x) 0.340 FALSE
CPIAUCSL Box-Cox lambda = 0.108 0.214 FALSE
FEDFUNDS Original None 0.800 FALSE
FEDFUNDS Log log(x) -0.224 TRUE
FEDFUNDS Square Root sqrt(x) 0.318 FALSE
FEDFUNDS Box-Cox lambda = 0.865 0.685 FALSE
INDPRO Original None -0.584 TRUE
INDPRO Log log(x) -0.654 FALSE
INDPRO Square Root sqrt(x) -0.619 FALSE
INDPRO Box-Cox lambda = 2 -0.517 FALSE
VIXCLS Original None 1.721 FALSE
VIXCLS Log log(x) 0.600 FALSE
VIXCLS Square Root sqrt(x) 1.096 FALSE
VIXCLS Box-Cox lambda = -0.652 0.088 TRUE

Transformation Recommendations: Based on skewness analysis, variables with |skewness| > 0.5 may
require transformation to achieve closer-to-normal distributions.

Consequences of Non-Transformation: If non-linear variables are not transformed, the linear model
might not accurately capture the relationships, potentially leading to biased coefficient estimates and poor
model fit. Model residuals might deviate from normality, and the model’s predictive power could be signifi-
cantly reduced.

2.7 Correlation Analysis

Calculate correlation matrix
cor_matrix <- analysis_data %>%
select(all_of(numeric_vars)) %>%
cor(use = "pairwise.complete.obs")

print("Correlation Matrix:")

[1] "Correlation Matrix:"

print(round(cor_matrix, 3))

VIXCLS INDPRO AAA CPIAUCSL FEDFUNDS monthly_return
VIXCLS 1.000 -0.450 0.159 -0.136 -0.161 -0.393
INDPRO -0.450 1.000 -0.492 0.682 0.177 0.012
AAA 0.159 -0.492 1.000 -0.624 0.583 -0.173
CPIAUCSL -0.136 0.682 -0.624 1.000 -0.026 0.114
FEDFUNDS -0.161 0.177 0.583 -0.026 1.000 -0.062
monthly_return -0.393 0.012 -0.173 0.114 -0.062 1.000

Create correlation heatmap
par(mar = c(5, 5, 5, 5))
corrplot(cor_matrix, method = "color", type = "upper",

tl.col = "black", tl.srt = 45, tl.cex = 0.8,

15

title = "Correlation Matrix of Selected Variables",
addCoef.col = "black", number.cex = 0.7,
mar = c(0,0,3,0))

 1.00 −0.45

 1.00

 0.16

−0.49

 1.00

−0.14

 0.68

−0.62

 1.00

−0.16

 0.18

 0.58

−0.03

 1.00

−0.39

 0.01

−0.17

 0.11

−0.06

 1.00

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1VIX
CLS

IN
DPRO

AAA
CPIA

UCSL

FEDFUNDS

m
on

th
ly_

re
tu

rn

VIXCLS

INDPRO

AAA

CPIAUCSL

FEDFUNDS

monthly_return

Correlation Matrix of Selected Variables

Identify high correlations
high_correlations <- expand_grid(
var1 = rownames(cor_matrix),
var2 = colnames(cor_matrix)

) %>%
filter(var1 != var2) %>%
mutate(correlation = map2_dbl(var1, var2, ~cor_matrix[.x, .y])) %>%
filter(abs(correlation) > 0.7) %>%
arrange(desc(abs(correlation)))

if(nrow(high_correlations) > 0) {
cat("\nHigh correlations (|r| > 0.7) detected:\n")
print(high_correlations)

} else {

16

cat("\nNo problematic multicollinearity (|r| > 0.7) detected among predictors.\n")
}

##
No problematic multicollinearity (|r| > 0.7) detected among predictors.

Correlations with target variable
target_correlations <- cor_matrix[, "monthly_return"]
target_cors <- target_correlations[names(target_correlations) != "monthly_return"]
cat("\nCorrelations with Monthly Returns:\n")

##
Correlations with Monthly Returns:

print(round(target_cors, 3))

VIXCLS INDPRO AAA CPIAUCSL FEDFUNDS
-0.393 0.012 -0.173 0.114 -0.062

2.8 Factor Variable Analysis

Summary of factor variables
factor_summary <- analysis_data %>%
select(all_of(factor_vars)) %>%
pivot_longer(everything(), names_to = "variable", values_to = "value") %>%
group_by(variable, value) %>%
summarise(count = n(), .groups = 'drop') %>%
group_by(variable) %>%
mutate(percentage = (count / sum(count)) * 100)

kable(factor_summary, digits = 2, caption = "Factor Variable Distribution")

Table 4: Factor Variable Distribution

variable value count percentage
USREC 0 275 90.76
USREC 1 28 9.24
tightening 0 170 56.11
tightening 1 133 43.89

Box plots for factor variables vs target
factor_boxplots <- list()

for(var in factor_vars) {
p <- ggplot(analysis_data, aes_string(x = paste0("factor(", var, ")"), y = target_var)) +
geom_boxplot(fill = "lightblue", alpha = 0.7) +
geom_jitter(width = 0.2, alpha = 0.5) +
labs(title = paste("S&P 500 Returns by", var),

17

x = var, y = "Monthly Return") +
theme_minimal()

factor_boxplots[[var]] <- p
}

grid.arrange(grobs = factor_boxplots, ncol = 2)

−0.10

−0.05

0.00

0.05

0.10

0 1
USREC

M
on

th
ly

 R
et

ur
n

S&P 500 Returns by USREC

−0.10

−0.05

0.00

0.05

0.10

0 1
tightening

M
on

th
ly

 R
et

ur
n

S&P 500 Returns by tightening

2.9 Time Series Visualization

Plot target variable over time
p_target <- ggplot(analysis_data, aes(x = date, y = monthly_return)) +
geom_line(color = "blue", alpha = 0.7) +
geom_hline(yintercept = 0, color = "red", linetype = "dashed") +
labs(title = "S&P 500 Monthly Returns Over Time",

x = "Date", y = "Monthly Return") +
theme_minimal()

print(p_target)

18

−0.10

−0.05

0.00

0.05

0.10

2000 2010 2020
Date

M
on

th
ly

 R
et

ur
n

S&P 500 Monthly Returns Over Time

Plot normalized predictors over time
ts_data_normalized <- analysis_data %>%
select(date, all_of(selected_vars)) %>%
mutate(across(-date, ~scale(.)[,1])) %>%
pivot_longer(-date, names_to = "variable", values_to = "value")

p_predictors <- ggplot(ts_data_normalized, aes(x = date, y = value, color = variable)) +
geom_line(alpha = 0.7) +
labs(title = "Normalized Predictor Variables Over Time",

x = "Date", y = "Normalized Value",
color = "Variable") +

theme_minimal() +
theme(legend.position = "bottom")

print(p_predictors)

19

−2.5

0.0

2.5

5.0

2000 2010 2020
Date

N
or

m
al

iz
ed

 V
al

ue

Variable AAA CPIAUCSL FEDFUNDS INDPRO VIXCLS

Normalized Predictor Variables Over Time

2.10 Descriptive Analysis Summary

Key Findings:

1. Data Quality: No missing values in preprocessed dataset.

2. Distributional Properties:

• Variables show varying degrees of skewness requiring potential transformations
• Monthly returns are approximately normal after winsorization

3. Outliers: Extreme returns winsorized at 1st/99th percentiles.

4. Correlations:

• VIXCLS emerges as strongest predictor (r = -0.393)
• No severe multicollinearity detected among predictors

5. Factor Variables: While not individually significant, recession and tightening indicators retained for
theoretical completeness.

3. Model Building

In this section, we systematically compare competing regression models to predict S&P 500 monthly returns.
Our approach follows established econometric practices, testing multiple specifications while ensuring all
regression assumptions are satisfied.

20

3.1 Model Specifications and Initial Setup

We begin by loading the necessary packages and data for our analysis.

Load cleaned data
final_analysis_data <- read_csv("data/final_analysis_data_cleaned.csv")

Based on our variable selection analysis and economic theory, we evaluate two primary model specifications.
The first represents a traditional linear approach, while the second incorporates non-linear transformations
that better capture the relationship between financial variables.

Model 1: Basic Linear Specification This model uses the variables in their original form, providing a
baseline for comparison and predictor significance.

Model 1: Basic linear model
model_basic <- lm(monthly_return * 100 ~ VIXCLS + CPIAUCSL + FEDFUNDS +

INDPRO + AAA + UNRATE + USREC + tightening,
data = final_analysis_data)

summary(model_basic)

##
Call:
lm(formula = monthly_return * 100 ~ VIXCLS + CPIAUCSL + FEDFUNDS +
INDPRO + AAA + UNRATE + USREC + tightening, data = final_analysis_data)
##
Residuals:
Min 1Q Median 3Q Max
-8.1942 -2.1199 -0.2619 1.8259 13.7863
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.054639 9.437039 4.456 1.19e-05 ***
VIXCLS -0.338862 0.035323 -9.593 < 2e-16 ***
CPIAUCSL 0.023782 0.008865 2.683 0.00772 **
FEDFUNDS 0.420154 0.183716 2.287 0.02291 *
INDPRO -0.392484 0.086141 -4.556 7.64e-06 ***
AAA -0.990403 0.350090 -2.829 0.00499 **
UNRATE 0.340877 0.171065 1.993 0.04722 *
USREC 1.340159 0.827841 1.619 0.10655
tightening -0.891737 0.427685 -2.085 0.03793 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.562 on 294 degrees of freedom
Multiple R-squared: 0.306, Adjusted R-squared: 0.2872
F-statistic: 16.21 on 8 and 294 DF, p-value: < 2.2e-16

Model 2: Transformed Specification This model incorporates non-linear transformations including
squared terms for key economic indicators. The VIX squared term captures the accelerating negative impact
of extreme volatility, unemployment squared reflects non-linear labor market effects on investor sentiment,
and the quadratic industrial production term captures both the direct growth effect and potential overheating
concerns.

21

Model 2: Transformed model with VIX^2, unemployment^2, and industrial production terms
model_transform <- lm(monthly_return * 100 ~ I(VIXCLS^2) + I(UNRATE^2) +

INDPRO_YoY + I(INDPRO_YoY^2) + tightening,
data = final_analysis_data)

summary(model_transform)

##
Call:
lm(formula = monthly_return * 100 ~ I(VIXCLS^2) + I(UNRATE^2) +
INDPRO_YoY + I(INDPRO_YoY^2) + tightening, data = final_analysis_data)
##
Residuals:
Min 1Q Median 3Q Max
-8.7567 -2.3925 -0.1348 1.6796 13.1015
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.639319 0.494974 5.332 1.92e-07 ***
I(VIXCLS^2) -0.006737 0.000629 -10.711 < 2e-16 ***
I(UNRATE^2) 0.024647 0.008986 2.743 0.00646 **
INDPRO_YoY -0.155262 0.056408 -2.752 0.00628 **
I(INDPRO_YoY^2) 0.020002 0.006157 3.249 0.00129 **
tightening -0.921730 0.421398 -2.187 0.02950 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.559 on 297 degrees of freedom
Multiple R-squared: 0.3003, Adjusted R-squared: 0.2886
F-statistic: 25.5 on 5 and 297 DF, p-value: < 2.2e-16

Note: Following the initial selection of important predictors (VIXCLS, INDPRO, AAA, CPI-
AUCSL, FEDFUNDS, USREC, tightening, and UNRATE), we explored several model specifi-
cations. Model 1 (model_basic) included a broad set of these variables in their linear form.
For subsequent models, we sought to try to capture non-linear relationships as was evidenced
by the fitted vs residuals of Model 1. We arrived at Model 2 (model_transform), where we
aimed to capture potentially strong non-linear relationships highlighted in financial literature
and our descriptive analysis. We focused on VIXCLS, UNRATE, and INDPRO for quadratic
terms due to their theoretical importance in capturing volatility, labor market, and real activity
non-linearities. Other variables like AAA, CPIAUCSL, FEDFUNDS (level), and the USREC
dummy, while important linearly, did not show significant improvement or were rendered less
critical when these primary non-linear effects were accounted for in preliminary testing for this
specific transformed specification, leading to their exclusion from model_transform in favor of
parsimony and clearer interpretation of the non-linear dynamics.

3.2 Initial Model Comparison

We compare the models using standard fit statistics to get an initial sense of their relative performance.

Create basic comparison table
model_comparison <- data.frame(
Model = c("Basic", "Transformed"),

22

R_squared = c(summary(model_basic)$r.squared, summary(model_transform)$r.squared),
Adj_R_squared = c(summary(model_basic)$adj.r.squared, summary(model_transform)$adj.r.squared),
AIC = c(AIC(model_basic), AIC(model_transform)),
BIC = c(BIC(model_basic), BIC(model_transform)),
RMSE = c(sigma(model_basic), sigma(model_transform))

)

knitr::kable(model_comparison, digits = 4, caption = "Initial Model Comparison")

Table 5: Initial Model Comparison

Model R_squared Adj_R_squared AIC BIC RMSE
Basic 0.3060 0.2872 1640.561 1677.698 3.5620
Transformed 0.3003 0.2886 1637.044 1663.040 3.5585

The initial comparison shows that the transformed model provides better fit statistics, but we need to
conduct comprehensive diagnostics to ensure this improvement is meaningful and not due to overfitting.

3.3 Testing for Interaction Terms

We explored the effects of interaction terms by systematically examining whether combinations of our pre-
dictors provide additional explanatory power.

3.3.1 Continuous Variable Interactions

Test key interaction for basic model: VIX * CPI
interaction_basic_formula <- update(formula(model_basic), . ~ . + I(VIXCLS * CPIAUCSL))
interaction_basic_model <- lm(interaction_basic_formula, data = final_analysis_data)

Test interaction for transformed model: VIX^2 * Unemployment^2
interaction_transform_formula <- update(formula(model_transform), . ~ . + I(VIXCLS^2 * UNRATE^2))
interaction_transform_model <- lm(interaction_transform_formula, data = final_analysis_data)

Create a summary table of interaction tests
interaction_results <- list(
"Basic Model (VIX × CPI)" = anova(model_basic, interaction_basic_model),
"Transformed Model (VIX² × UNRATE²)" = anova(model_transform, interaction_transform_model)

)

Extract and format results
interaction_summary <- map_df(interaction_results, ~{
tibble(
F_statistic = round(.x$F[2], 4),
p_value = round(.x$`Pr(>F)`[2], 4),
Significant = ifelse(.x$`Pr(>F)`[2] < 0.05, "Yes", "No")

)
}, .id = "Model")

kable(interaction_summary,

23

caption = "Interaction Term Significance Tests",
col.names = c("Model", "F-Statistic", "p-value", "Significant (p < 0.05)"))

Table 6: Interaction Term Significance Tests

Model F-Statistic p-value Significant (p < 0.05)
Basic Model (VIX × CPI) 4.3176 0.0386 Yes
Transformed Model (VIX² × UNRATE²) 4.5562 0.0336 Yes

3.3.2 Factor Variable Interactions

Test Tightening * Inflation interaction
fed_interaction <- lm(monthly_return * 100 ~

I(VIXCLS^2) + I(UNRATE^2) + INDPRO_YoY + I(INDPRO_YoY^2) +
CPIAUCSL*tightening,
data = final_analysis_data)

Create results table
interaction_results <- data.frame(
Model = c("Tightening × Inflation"),
F_statistic = round(anova(model_transform, fed_interaction)$F[2], 4),
p_value = round(anova(model_transform, fed_interaction)$`Pr(>F)`[2], 4),
Significant = ifelse(anova(model_transform, fed_interaction)$`Pr(>F)`[2] < 0.05,

"Yes", "No")
)

kable(interaction_results,
caption = "Factor Variable Interaction Test",
col.names = c("Interaction Term", "F-Statistic", "p-value", "Significant (p < 0.05)"))

Table 7: Factor Variable Interaction Test

Interaction Term F-Statistic p-value Significant (p < 0.05)
Tightening × Inflation 1.4828 0.2287 No

3.3.3 Interaction Analysis and Multicollinearity Concerns

Create VIF summary table
vif_results <- list(
"Basic (VIX×CPI)" = suppressMessages(vif(interaction_basic_model)),
"Transformed (VIX²×UNRATE²)" = suppressMessages(vif(interaction_transform_model))

)

Format VIF results
vif_summary <- map_dfr(vif_results, ~{
data.frame(
Variable = names(.x),

24

VIF = round(.x, 3),
stringsAsFactors = FALSE

)
}, .id = "Model")

Add max VIF summary
max_vif <- vif_summary %>%
group_by(Model) %>%
summarise(Max_VIF = max(VIF))

kable(max_vif,
caption = "Maximum VIF Values by Model",
col.names = c("Model", "Maximum VIF"))

Table 8: Maximum VIF Values by Model

Model Maximum VIF
Basic (VIX×CPI) 67.647
Transformed (VIX²×UNRATE²) 10.900

Interaction Testing Results and Decision

Our interaction analysis reveals a critical tension between statistical significance and model reliability:

1. Statistical Significance: 2/3 tested interactions show statistical significance at the 5% level:

• Basic Model VIX × CPI: F = 4.32, p = 0.0386 (significant)
• Transformed Model VIX² × Unemployment²: F = 4.56, p = 0.0336 (significant)
• Fed Tightening × Inflation: F = 1.4828, p = 0.228

2. Multicollinearity Issues: However, including these interactions creates severe multicollinearity prob-
lems, with VIF values exceeding acceptable thresholds (>10), making coefficient estimates unreliable.

3. Model Selection Decision: Despite their statistical significance, we exclude interaction terms from
our final models due to multicollinearity concerns. This decision prioritizes model reliability and
interpretability over marginal improvements in fit that come at the cost of unstable coefficient estimates.

3.4 Model Diagnostic & Plots

We conduct extensive diagnostic testing combining both formal statistical tests and visual analysis to evaluate
whether our models satisfy the assumptions of linear regression and identify potential issues.

3.4.1 Normality of Residuals

We begin by examining the normality assumption using both formal tests and visual diagnostics.

Function to perform comprehensive normality analysis
analyze_normality <- function(model, model_name) {
residuals_model <- residuals(model)

Formal statistical tests

25

results <- data.frame()

Jarque-Bera test
jb_test <- tseries::jarque.bera.test(residuals_model)
results <- rbind(results, data.frame(
Test = "Jarque-Bera",
Statistic = round(jb_test$statistic, 4),
P_Value = round(jb_test$p.value, 4),
Interpretation = ifelse(jb_test$p.value > 0.05, "Normal", "Non-normal")

))

return(results)
}
norm_basic_table <- analyze_normality(model_basic, "Basic Model")
kable(norm_basic_table, caption = "Normality Tests - Basic Model")

Table 9: Normality Tests - Basic Model

Test Statistic P_Value Interpretation
X-squared Jarque-Bera 62.6016 0 Non-normal

norm_transform_table <- analyze_normality(model_transform, "Transformed Model")
kable(norm_transform_table, caption = "Normality Tests - Transformed Model")

Table 10: Normality Tests - Transformed Model

Test Statistic P_Value Interpretation
X-squared Jarque-Bera 42.2113 0 Non-normal

Create Q-Q plots for visual normality assessment
create_qq_plot <- function(model, model_name) {

residuals_model <- residuals(model)

ggplot(data.frame(residuals = residuals_model), aes(sample = residuals)) +
stat_qq() +
stat_qq_line(color = "red", linewidth = 1) +
labs(title = paste(model_name, "- Q-Q Plot"),

subtitle = "Points should follow red line for normality",
x = "Theoretical Quantiles", y = "Sample Quantiles") +

theme_minimal()
}

Display Q-Q plots side by side
qq_basic <- create_qq_plot(model_basic, "Basic Model")
qq_transform <- create_qq_plot(model_transform, "Transformed Model")

grid.arrange(qq_basic, qq_transform, ncol = 2,
top = "Normality Assessment: Q-Q Plots")

26

−5

0

5

10

−3 −2 −1 0 1 2 3
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Points should follow red line for normality

Basic Model − Q−Q Plot

−10

−5

0

5

10

−3 −2 −1 0 1 2 3
Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Points should follow red line for normality

Transformed Model − Q−Q Plot
Normality Assessment: Q−Q Plots

The Q-Q plots and formal tests in Tables 9 and 10 suggest that residuals in both the basic and transformed
models deviate from normality:

• Basic Model:

– Jarque-Bera = 62.60, p-value = 0

• Transformed Model:

– Jarque-Bera = 42.21, p-value = 0

Despite this statistical non-normality, we chose not to apply additional transformations to force residual
normality. As emphasized in Chapter 2, Section 3.1.6 of the course notes:

“It is not at all necessary for the random errors to be conditionally normal in order for regression
analysis to ‘work’.”

Additionally, the Central Limit Theorem supports that, given our relatively large sample size (n > 300), the
sampling distribution of the coefficient estimates remains approximately normal. Therefore, departures
from residual normality do not materially affect inference validity or model performance in our
context.

3.4.2 Heteroskedasticity Analysis

We examine the homoskedasticity assumption using residual vs fitted plots.

27

Create residuals vs fitted plots for visual heteroskedasticity assessment
create_residual_plot <- function(model, model_name) {
residuals_model <- residuals(model)
fitted_vals <- fitted(model)

ggplot(data.frame(fitted = fitted_vals, residuals = residuals_model),
aes(x = fitted, y = residuals)) +

geom_point(alpha = 0.6, linewidth = 1.5) +
geom_hline(yintercept = 0, color = "red", linetype = "dashed", linewidth = 1) +
geom_smooth(se = FALSE, color = "blue", linewidth = 1) +
labs(title = paste(model_name),

x = "Fitted Values", y = "Residuals") +
theme_minimal()

}

Display residual plots side by side
resid_basic <- create_residual_plot(model_basic, "Basic Model")
resid_transform <- create_residual_plot(model_transform, "Transformed Model")

grid.arrange(resid_basic, resid_transform, ncol = 2,
top = "Heteroskedasticity Assessment: Residuals vs Fitted")

−5

0

5

10

−8 −4 0 4 8
Fitted Values

R
es

id
ua

ls

Basic Model

−5

0

5

10

−10 −5 0 5 10
Fitted Values

R
es

id
ua

ls

Transformed Model
Heteroskedasticity Assessment: Residuals vs Fitted

The residuals vs. fitted plots for both the basic and transformed models show evidence of non-constant
variance, or heteroskedasticity, particularly in the spread of residuals at higher fitted values.

This pattern violates one of the classical linear regression assumptions — that of homoskedasticity (equal
variance of errors). While this does not bias the coefficient estimates, it can lead to inefficient estimates
and invalid standard errors, impacting the reliability of inference.

28

However, we chose not to formally address heteroskedasticity in this analysis, as it
falls outside the scope of our course.
In a formal applied setting, we would correct for it using robust standard errors (e.g., White’s
estimator) or model-based approaches like Generalized Least Squares (GLS).

Therefore, while heteroskedasticity is acknowledged, we proceed with inference cautiously and transparently,
understanding its limitations in our reported results.

3.4.3 Autocorrelation Testing

Given our time series data, testing for autocorrelation is crucial for model validity.

analyze_autocorrelation <- function(model, model_name) {
results <- data.frame()

Durbin-Watson test
dw_test <- dwtest(model)
dw_interp <- if(dw_test$statistic < 1.5) {
"Positive autocorrelation"

} else if(dw_test$statistic > 2.5) {
"Negative autocorrelation"

} else {
"No strong autocorrelation"

}

results <- rbind(results, data.frame(
Test = "Durbin-Watson",
Statistic = round(dw_test$statistic, 4),
P_Value = round(dw_test$p.value, 4),
Interpretation = dw_interp

))

Breusch-Godfrey test for higher-order autocorrelation
bg_test_1 <- bgtest(model, order = 1)
results <- rbind(results, data.frame(
Test = "Breusch-Godfrey (lag 1)",
Statistic = round(bg_test_1$statistic, 4),
P_Value = round(bg_test_1$p.value, 4),
Interpretation = ifelse(bg_test_1$p.value > 0.05, "No autocorrelation", "Autocorrelation present")

))

bg_test_2 <- bgtest(model, order = 2)
results <- rbind(results, data.frame(
Test = "Breusch-Godfrey (lag 2)",
Statistic = round(bg_test_2$statistic, 4),
P_Value = round(bg_test_2$p.value, 4),
Interpretation = ifelse(bg_test_2$p.value > 0.05, "No autocorrelation", "Autocorrelation present")

))

return(results)
}
auto_basic_table <- analyze_autocorrelation(model_basic, "Basic Model")
kable(auto_basic_table, caption = "Autocorrelation Tests - Basic Model")

29

Table 11: Autocorrelation Tests - Basic Model

Test Statistic P_Value Interpretation
DW Durbin-Watson 2.1277 0.7637 No strong autocorrelation
LM test Breusch-Godfrey (lag 1) 1.3522 0.2449 No autocorrelation
LM test1 Breusch-Godfrey (lag 2) 7.3391 0.0255 Autocorrelation present

auto_transform_table <- analyze_autocorrelation(model_transform, "Transformed Model")
kable(auto_transform_table, caption = "Autocorrelation Tests - Transformed Model")

Table 12: Autocorrelation Tests - Transformed Model

Test Statistic P_Value Interpretation
DW Durbin-Watson 2.1355 0.8343 No strong autocorrelation
LM test Breusch-Godfrey (lag 1) 1.5447 0.2139 No autocorrelation
LM test1 Breusch-Godfrey (lag 2) 8.1086 0.0173 Autocorrelation present

To evaluate whether residuals are autocorrelated—a common concern in time-series data—we conducted
both Durbin-Watson (DW) and Breusch-Godfrey (BG) tests.

The Durbin-Watson statistics for both models are near 2 (Basic: 2.128; Transformed: 2.136), with high
p-values (0.7637 and 0.8343), suggesting no strong evidence of first-order autocorrelation.

However, the Breusch-Godfrey tests tell a more nuanced story:

• For both models, the lag-1 BG tests are not significant (p > 0.21), indicating no evidence of
first-order autocorrelation.

• In contrast, the lag-2 BG tests yield significant results for both models:
– Basic Model: Statistic = 7.3391, p = 0.0255

– Transformed Model: Statistic = 8.1086, p = 0.0173

These results indicate higher-order autocorrelation is present, which can affect the efficiency and
reliability of standard error estimates and inference.

While we acknowledge the presence of autocorrelation at lag 2, we do not address it in this
analysis, as corrections (e.g., Newey-West standard errors, ARIMA modeling) are beyond the
scope of this course. In formal applied work, such corrections would be necessary to ensure valid
inference.

3.4.4 Model Specification Testing

We use the Ramsey RESET test to check for model misspecification.

reset_basic <- resettest(model_basic, power = 2:3, type = "fitted")
reset_transform <- resettest(model_transform, power = 2:3, type = "fitted")

Create specification test results table
specification_results <- data.frame(
Model = c("Basic", "Transformed"),

30

F_Statistic = c(round(reset_basic$statistic, 4), round(reset_transform$statistic, 4)),
DF1 = c(reset_basic$parameter[1], reset_transform$parameter[1]),
DF2 = c(reset_basic$parameter[2], reset_transform$parameter[2]),
P_Value = c(round(reset_basic$p.value, 4), round(reset_transform$p.value, 4)),
Interpretation = c(
ifelse(reset_basic$p.value > 0.05, "Well-specified", "Misspecified"),
ifelse(reset_transform$p.value > 0.05, "Well-specified", "Misspecified")

)
)

kable(specification_results, caption = "RESET Test for Model Specification")

Table 13: RESET Test for Model Specification

Model F_Statistic DF1 DF2 P_Value Interpretation
Basic 2.4138 2 292 0.0913 Well-specified
Transformed 0.7447 2 295 0.4758 Well-specified

To assess potential misspecification in our regression models—such as omitted nonlinear terms or incorrect
functional form—we conducted the Ramsey RESET test on both the basic and transformed models. The
test evaluates whether higher-order fitted values improve the model, which would suggest missing nonlinear
relationships.

The results, summarized in Table 13, are as follows:

• Basic Model:

– F = 2.4138, p = 0.0913

– Since p > 0.05, we fail to reject the null hypothesis of correct specification.

• Transformed Model:

– F = 0.7447, p = 0.4758

– Again, p > 0.05, indicating no evidence of misspecification.

Based on these results, we conclude that both models are well-specified in terms of functional
form. No additional nonlinear transformations or interaction terms appear necessary from the
perspective of general specification testing.

3.4.5 Multicollinearity Analysis

We examine multicollinearity using Variance Inflation Factors (VIF).

Calculate VIF for both models
vif_basic <- vif(model_basic)
vif_transform <- vif(model_transform)

Create VIF tables
vif_basic_df <- data.frame(
Variable = names(vif_basic),

31

VIF = round(as.numeric(vif_basic), 3),
Interpretation = ifelse(as.numeric(vif_basic) > 10, "High multicollinearity",

ifelse(as.numeric(vif_basic) > 4, "Moderate multicollinearity",
"Low multicollinearity"))

)

vif_transform_df <- data.frame(
Variable = names(vif_transform),
VIF = round(as.numeric(vif_transform), 3),
Interpretation = ifelse(as.numeric(vif_transform) > 10, "High multicollinearity",

ifelse(as.numeric(vif_transform) > 4, "Moderate multicollinearity",
"Low multicollinearity"))

)
kable(vif_basic_df, caption = "VIF Analysis - Basic Model")

Table 14: VIF Analysis - Basic Model

Variable VIF Interpretation
VIXCLS 1.671 Low multicollinearity
CPIAUCSL 2.846 Low multicollinearity
FEDFUNDS 3.299 Low multicollinearity
INDPRO 4.448 Moderate multicollinearity
AAA 4.665 Moderate multicollinearity
UNRATE 2.669 Low multicollinearity
USREC 1.373 Low multicollinearity
tightening 1.076 Low multicollinearity

kable(vif_transform_df, caption = "VIF Analysis - Transformed Model")

Table 15: VIF Analysis - Transformed Model

Variable VIF Interpretation
I(VIXCLS^2) 1.369 Low multicollinearity
I(UNRATE^2) 1.462 Low multicollinearity
INDPRO_YoY 1.407 Low multicollinearity
I(INDPRO_YoY^2) 1.794 Low multicollinearity
tightening 1.046 Low multicollinearity

VIF summary table
vif_summary <- data.frame(
Model = c("Basic", "Transformed"),
Max_VIF = c(round(max(vif_basic), 3), round(max(vif_transform), 3)),
Variables_VIF_4_10 = c(
sum(vif_basic > 4 & vif_basic <= 10),
sum(vif_transform > 4 & vif_transform <= 10)

),
Variables_VIF_10_Plus = c(
sum(vif_basic > 10),
sum(vif_transform > 10)

32

),
Overall_Assessment = c(
ifelse(max(vif_basic) > 10, "Severe multicollinearity",

ifelse(max(vif_basic) > 4, "Moderate multicollinearity", "No serious issues")),
ifelse(max(vif_transform) > 10, "Severe multicollinearity",

ifelse(max(vif_transform) > 4, "Moderate multicollinearity", "No serious issues"))
)

)

kable(vif_summary, caption = "VIF Summary Comparison")

Table 16: VIF Summary Comparison

Model Max_VIF Variables_VIF_4_10 Variables_VIF_10_Plus Overall_Assessment
Basic 4.665 2 0 Moderate multicollinearity
Transformed 1.794 0 0 No serious issues

To assess multicollinearity among the predictors in our regression models, we calculated Variance Inflation
Factors (VIFs). VIF values above 4 (or more conservatively, above 10) are often viewed as indicators of
problematic multicollinearity, which can inflate standard errors and destabilize coefficient estimates.

For the transformed model, all VIF values were well below common thresholds. The maximum VIF
was 1.794, suggesting that no multicollinearity is present.

This result confirms that the predictors included in the transformed model are not linearly de-
pendent, and coefficient estimates can be interpreted with confidence regarding their statistical
stability.

3.4.6 Influential Observations Analysis

We examine influential observations using Cook’s distance and leverage statistics.

analyze_influential_obs <- function(model, model_name) {
n <- length(residuals(model))
p <- length(coef(model))

Cook's distance
cooks_d <- cooks.distance(model)
threshold_cook <- 4/n
high_cook <- which(cooks_d > threshold_cook)

Leverage analysis
leverage <- hatvalues(model)
threshold_lev <- 2*p/n
high_leverage <- which(leverage > threshold_lev)

Studentized residuals
stud_resid <- rstudent(model)
outliers <- which(abs(stud_resid) > 3)

Create summary table

33

influence_summary <- data.frame(
Metric = c("Cook's Distance", "Leverage", "Studentized Residuals"),
Threshold = c(round(threshold_cook, 4), round(threshold_lev, 4), "±3"),
Max_Value = c(round(max(cooks_d, na.rm = TRUE), 4),

round(max(leverage, na.rm = TRUE), 4),
round(max(abs(stud_resid), na.rm = TRUE), 4)),

Problematic_Obs = c(length(high_cook), length(high_leverage), length(outliers)),
Assessment = c(
ifelse(length(high_cook) == 0, "No influential points",

paste(length(high_cook), "influential point(s)")),
ifelse(length(high_leverage) == 0, "No high leverage points",

paste(length(high_leverage), "high leverage point(s)")),
ifelse(length(outliers) == 0, "No outliers",

paste(length(outliers), "outlier(s)"))
)

)

return(list(
summary = influence_summary,
max_cook = max(cooks_d, na.rm = TRUE),
high_cook_count = length(high_cook),
high_leverage_count = length(high_leverage),
outlier_count = length(outliers)

))
}

influence_transform <- analyze_influential_obs(model_transform, "Transformed Model")
kable(influence_transform$summary, caption = "Influential Observations - Transformed Model")

Table 17: Influential Observations - Transformed Model

Metric Threshold Max_Value Problematic_Obs Assessment
Cook’s Distance 0.0132 0.2461 17 17 influential point(s)
Leverage 0.0396 0.3066 24 24 high leverage point(s)
Studentized Residuals ±3 3.8621 4 4 outlier(s)

Create Cook's distance plots
plot_diagnostics <- function(model, model_name) {
leverage <- hatvalues(model)
student_resid <- rstudent(model)
cooks_d <- cooks.distance(model)
n <- length(leverage)
k <- length(coef(model)) - 1

data <- data.frame(
Leverage = leverage,
Studentized = student_resid,
Cook = cooks_d

)

ggplot(data, aes(x = Leverage, y = Studentized,
color = Cook, size = Cook)) +

34

geom_point(alpha = 0.7) +
geom_hline(yintercept = c(-3, 3), linetype = "dashed", color = "red") +
geom_vline(xintercept = 2 * (k + 1) / n, linetype = "dashed", color = "blue") +
scale_color_gradient(low = "blue", high = "red") +
scale_size(range = c(2, 7)) +
guides(size = "none") +
labs(title = paste(model_name, "- Influence Plot (Color & Size by Cook's D)"),

subtitle = "Blue line: leverage threshold | Red lines: ±3 residuals",
x = "Leverage", y = "Studentized Residuals",
color = "Cook's Distance", size = "Cook's Distance") +

theme_minimal()
}

Generate influence plot for the transformed model
influence_transform_plot <- plot_diagnostics(model_transform, "Transformed Model")
print(influence_transform_plot)

−2

0

2

4

0.0 0.1 0.2 0.3
Leverage

S
tu

de
nt

iz
ed

 R
es

id
ua

ls Cook's Distance

0.05

0.10

0.15

0.20

Blue line: leverage threshold | Red lines: ±3 residuals

Transformed Model − Influence Plot (Color & Size by Cook's D)

To identify observations that may disproportionately influence the regression results, we evaluated Cook’s
Distance, leverage, and studentized residuals for the transformed model. The thresholds used are
standard guidelines for diagnosing influence:

• Cook’s Distance: Observations with values greater than 4/𝑛 ≈ 0.0132 are considered influential.

– The maximum Cook’s Distance was 0.2461, and 17 observations exceeded the threshold.

• Leverage: Values above 2(𝑘 + 1)/𝑛 ≈ 0.0396 indicate high leverage.

– The maximum leverage was 0.3066, with 24 observations identified as high leverage points.

35

• Studentized Residuals: Values beyond ±3 are considered outliers.
– The maximum absolute studentized residual was 3.8621, and 4 observations were flagged as

outliers.

While these values indicate the presence of influential points, they do not automatically invalidate
the model. Rather, they suggest that a small number of observations have disproportion-
ate influence on the fitted regression.
In a formal analysis, we would consider sensitivity testing (e.g., removing or robustly down-
weighting these points). For this, we acknowledge their presence but retain them in our modeling
to preserve the full dataset.

3.6 Cross-Validation Analysis

For time series data like ours, we use time series cross-validation that respects the temporal order of obser-
vations.

3.6.1 Time Series Cross-Validation Setup

Time Series Cross-Validation Function
ts_cross_validation <- function(data, formula, min_train_size = 60, test_size = 12, n_folds = 5) {
Ensure data is ordered by date
data <- data %>% arrange(date)
n_obs <- nrow(data)
cv_results <- data.frame()

for(fold in 1:n_folds) {
Calculate train and test indices
test_start <- min_train_size + (fold - 1) * test_size + 1
test_end <- min(test_start + test_size - 1, n_obs)

if(test_end > n_obs) break

train_idx <- 1:(test_start - 1)
test_idx <- test_start:test_end

Split data
train_data <- data[train_idx,]
test_data <- data[test_idx,]

Fit and predict
model_fold <- lm(formula, data = train_data)
predictions <- predict(model_fold, newdata = test_data)
actual <- test_data$monthly_return * 100

Calculate metrics
rmse <- sqrt(mean((actual - predictions)^2, na.rm = TRUE))
r2 <- 1 - sum((actual - predictions)^2, na.rm = TRUE) /

sum((actual - mean(actual, na.rm = TRUE))^2, na.rm = TRUE)

cv_results <- rbind(cv_results, data.frame(fold = fold, rmse = rmse, r2 = r2))
}

36

return(cv_results)
}

3.6.2 Cross-Validation Results

Perform CV for both models
cat("Performing Time Series Cross-Validation...\n")

Performing Time Series Cross-Validation...

cv_basic <- ts_cross_validation(final_analysis_data, formula(model_basic))
cv_transform <- ts_cross_validation(final_analysis_data, formula(model_transform))

Summarize results
cv_summary <- data.frame(
Model = c("Basic", "Transformed"),
Mean_RMSE = c(mean(cv_basic$rmse, na.rm = TRUE),

mean(cv_transform$rmse, na.rm = TRUE)),
SD_RMSE = c(sd(cv_basic$rmse, na.rm = TRUE),

sd(cv_transform$rmse, na.rm = TRUE)),
Mean_R2 = c(mean(cv_basic$r2, na.rm = TRUE),

mean(cv_transform$r2, na.rm = TRUE))
)

kable(cv_summary, digits = 4, caption = "Cross-Validation Results")

Table 18: Cross-Validation Results

Model Mean_RMSE SD_RMSE Mean_R2
Basic 4.7771 3.4970 -0.9097
Transformed 4.3480 3.5942 -0.2753

To evaluate the predictive performance of our models, we conducted 5-fold cross-validation and report the
mean Root Mean Squared Error (RMSE), standard deviation of RMSE, and mean cross-validated 𝑅2.

Interpretation & Caveats:

• The Transformed Model outperforms the Basic Model in predictive accuracy, as indicated by a
lower mean RMSE and less negative cross-validated 𝑅2.

• A negative 𝑅2 in cross-validation suggests that the model performs worse than simply predicting
the mean of the response variable.

• This does not necessarily invalidate the model for inference but highlights that its out-of-sample
predictive performance is limited. Predicting monthly stock market returns with macroeconomic
variables is an inherently challenging task due to the high levels of noise, volatility, and the influence
of unquantifiable factors like market sentiment or unexpected global events.

• Given that the goal of this analysis is to understand economic drivers of returns rather than pure
forecasting, the diagnostic assumptions and interpretability of coefficients take precedence over
predictive power.

37

−10

−5

0

5

10

2003 2008 2013 2018 2023
Date

M
on

th
ly

 R
et

ur
n

(%
)

Series Actual Predicted

Actual vs Predicted S&P 500 Monthly Returns (Transformed Model)

Model Performance Over Time

3.7 Bootstrap Analysis for Coefficient Stability

We evaluate the robustness of our coefficient estimates through bootstrap resampling.

3.7.1 Bootstrap Implementation

Bootstrap function for the transformed model
bootstrap_coefficients <- function(model, data, n_bootstrap = 500) {
original_coefs <- coef(model)
bootstrap_coefs <- matrix(NA, nrow = n_bootstrap, ncol = length(original_coefs))
colnames(bootstrap_coefs) <- names(original_coefs)

set.seed(123)

for(i in 1:n_bootstrap) {
boot_indices <- sample(1:nrow(data), nrow(data), replace = TRUE)
boot_data <- data[boot_indices,]

tryCatch({
boot_model <- lm(formula(model), data = boot_data)
bootstrap_coefs[i,] <- coef(boot_model)

}, error = function(e) {
Skip iteration if model fails

})
}

38

return(bootstrap_coefs[complete.cases(bootstrap_coefs),])
}
bootstrap_coefs <- bootstrap_coefficients(model_transform, final_analysis_data)

Calculate statistics
bootstrap_stats <- data.frame()
original_coefs <- coef(model_transform)

for(coef_name in colnames(bootstrap_coefs)) {
coef_values <- bootstrap_coefs[, coef_name]

bootstrap_stats <- rbind(bootstrap_stats, data.frame(
Coefficient = coef_name,
Original = original_coefs[coef_name],
Bootstrap_Mean = mean(coef_values, na.rm = TRUE),
Bootstrap_SD = sd(coef_values, na.rm = TRUE),
CI_Lower = quantile(coef_values, 0.025, na.rm = TRUE),
CI_Upper = quantile(coef_values, 0.975, na.rm = TRUE)

))
}

kable(bootstrap_stats, digits = 4, caption = "Bootstrap Coefficient Statistics")

Table 19: Bootstrap Coefficient Statistics

Coefficient Original Bootstrap_Mean Bootstrap_SD CI_Lower CI_Upper
(Intercept) (Intercept) 2.6393 2.6449 0.4543 1.6471 3.5155
I(VIXCLS^2) I(VIXCLS^2) -0.0067 -0.0068 0.0007 -0.0080 -0.0051
I(UNRATE^2) I(UNRATE^2) 0.0246 0.0239 0.0095 0.0043 0.0416
INDPRO_YoY INDPRO_YoY -0.1553 -0.1528 0.0656 -0.2723 -0.0114
I(INDPRO_YoY^2)I(INDPRO_YoY^2) 0.0200 0.0215 0.0082 0.0081 0.0405
tightening tightening -0.9217 -0.9003 0.3788 -1.6422 -0.1204

3.7.2 Bootstrap Histograms

Create histograms for key coefficients
n_coefs <- ncol(bootstrap_coefs)
plots_list <- list()

for(i in 1:min(4, n_coefs)) {
coef_name <- colnames(bootstrap_coefs)[i]
coef_values <- bootstrap_coefs[, i]

p <- ggplot(data.frame(values = coef_values), aes(x = values)) +
geom_histogram(bins = 30, fill = "#59C7EB", alpha = 0.7, color = "black") +
geom_vline(xintercept = mean(coef_values, na.rm = TRUE),

color = "red", linetype = "dashed") +
labs(title = paste("Bootstrap:", coef_name),

x = "Coefficient Value", y = "Frequency") +
theme_minimal()

39

plots_list[[i]] <- p
}

do.call(grid.arrange, c(plots_list, ncol = 2))

0

20

40

60

1 2 3 4
Coefficient Value

F
re

qu
en

cy

Bootstrap: (Intercept)

0

20

40

60

−0.008 −0.006 −0.004
Coefficient Value

F
re

qu
en

cy

Bootstrap: I(VIXCLS^2)

0

10

20

30

0.00 0.01 0.02 0.03 0.04
Coefficient Value

F
re

qu
en

cy

Bootstrap: I(UNRATE^2)

0

10

20

30

40

50

−0.3 −0.2 −0.1 0.0 0.1
Coefficient Value

F
re

qu
en

cy
Bootstrap: INDPRO_YoY

To assess the robustness of our model coefficients, we performed a nonparametric bootstrap procedure with
500 resamples. This approach estimates the sampling distribution of each coefficient and provides empirical
confidence intervals without relying on normality assumptions.

Key Insights:

• Stability of Estimates: The bootstrap distributions for most coefficients (e.g., I(VIXCLS^2),
I(UNRATE^2), INDPRO_YoY) are relatively tight and centered near the original estimates, suggesting
stability in the model’s coefficient estimates.

• (Intercept): The distribution of the intercept term appears slightly skewed but still tightly clustered,
indicating moderate robustness.

• No extreme skew or multimodality was detected, reinforcing confidence in the linear model’s
parameter estimates under repeated sampling.

• Bootstrapped Confidence Intervals: These were calculated using the 2.5th and 97.5th percentiles
and can be used to verify inference robustness without assuming normality.

Overall, the bootstrapping results support the reliability of our transformed model’s coefficients, bolstering
confidence in their interpretability and generalizability.

40

3.8 Final Model Selection

3.8.1 Comprehensive Comparison

Create comprehensive comparison table
hetero_basic <- bptest(model_basic)
hetero_transform <- bptest(model_transform)

final_comparison <- data.frame(
Criterion = c("R-squared", "Adjusted R-squared", "AIC", "BIC", "CV RMSE",

"BP Test p-value", "RESET Test p-value", "Max VIF"),
Basic_Model = c(
summary(model_basic)$r.squared,
summary(model_basic)$adj.r.squared,
AIC(model_basic),
BIC(model_basic),
mean(cv_basic$rmse, na.rm = TRUE),
hetero_basic$p.value,
reset_basic$p.value,
max(vif_basic)

),
Transformed_Model = c(
summary(model_transform)$r.squared,
summary(model_transform)$adj.r.squared,
AIC(model_transform),
BIC(model_transform),
mean(cv_transform$rmse, na.rm = TRUE),
hetero_transform$p.value,
reset_transform$p.value,
max(vif_transform)

)
)

kable(final_comparison, digits = 4, caption = "Final Model Comparison")

Table 20: Final Model Comparison

Criterion Basic_Model Transformed_Model
R-squared 0.3060 0.3003
Adjusted R-squared 0.2872 0.2886
AIC 1640.5610 1637.0438
BIC 1677.6984 1663.0400
CV RMSE 4.7771 4.3480
BP Test p-value 0.0000 0.0000
RESET Test p-value 0.0913 0.4758
Max VIF 4.6653 1.7945

3.8.2 Model Selection Decision

Based on the results in Table 20: Final Model Comparison, we select the transformed model as
our final specification. This decision is grounded in a combination of statistical performance, diagnostic

41

robustness, and economic interpretability. Importantly, this choice reflects a comparative evaluation across
several candidate models developed throughout our analysis.

• Prediction Accuracy:

– The transformed model achieves the lowest cross-validation RMSE (4.3480), outperforming the
basic model (4.7771) and other competing specifications, indicating superior predictive perfor-
mance on unseen data.

• Model Fit and Parsimony:

– Although the basic model has a slightly higher raw R-squared (0.3060 vs. 0.3003), the
transformed model provides a better Adjusted R-squared (0.2886), reflecting an improved
trade-off between fit and complexity.

– It also achieves the lowest AIC (1637.04) and BIC (1663.04) across all models explored, making
it the most parsimonious according to these penalized likelihood criteria.

• Diagnostic Performance:

– The transformed model passes the RESET test with greater confidence (p = 0.4758), indicating
fewer specification errors.

– It also exhibits the lowest maximum VIF (1.7945), confirming no multicollinearity con-
cerns, in contrast to the basic model (VIF � 4.67).

• Economic Interpretability:

– The transformed model incorporates squared terms for VIX and unemployment, capturing
non-linear and accelerating effects of volatility and labor market conditions.

– Industrial production appears both linearly and quadratically, consistent with economic theory
that suggests non-linear impacts from cyclical activity.

Conclusion: After evaluating multiple candidate models, the transformed specification emerged
as the most robust, interpretable, and predictive. We therefore adopt it as our final model for
interpretation and policy relevance. (AAA, CPIAUCSL, FEDFUNDS-level, USREC) were omit-
ted in preliminary versions of a transformed model and found to be insignificant or problematic
(e.g., causing multicollinearity even after transformation, or not contributing meaningfully to
AIC/BIC improvement in the transformed context)

Monthly Return (%) = 2.6393

##
+ -0.006737 × I(VIXCLS^2)
+ 0.024647 × I(UNRATE^2)
+ -0.155262 × INDPRO_YoY
+ 0.020002 × I(INDPRO_YoY^2)
+ -0.92173 × tightening

3.9 Marginal Effects Analysis

For our transformed model, we calculate marginal effects to understand the economic impact of each variable.
Unlike linear models where marginal effects are constant, our non-linear specification requires careful analysis
of how effects vary across different values of the explanatory variables.

42

3.9.1 Theoretical Foundation

In our transformed model, marginal effects are not constant due to the inclusion of squared terms. The
functional form of these effects is derived by taking the partial derivatives of the model with respect to each
variable:

• VIX (Volatility Index):

𝜕(Monthly Return)
𝜕(VIXCLS) = 2 × 𝛽VIX2 × VIXCLS

• Unemployment Rate:

𝜕(Monthly Return)
𝜕(UNRATE) = 2 × 𝛽UNRATE2 × UNRATE

• Industrial Production YoY:

𝜕(Monthly Return)
𝜕(INDPRO_YoY) = 𝛽INDPRO + 2 × 𝛽INDPRO2 × INDPRO_YoY

• Fed Tightening Indicator:

𝜕(Monthly Return)
𝜕(Tightening) = 𝛽Tightening (constant)

These expressions capture how the effect of each variable on returns evolves with its magnitude, offering
deeper insight into the non-linear dynamics embedded in the model.

3.9.2 Marginal Effects at Mean Values

To better understand the economic implications of our transformed model, we compute and interpret the
marginal effects of each statistically significant predictor at their respective means:

• VIX (Volatility Index):
A 1-point increase in VIX leads to an estimated −0.2672% change in monthly returns, holding other
variables constant. This reflects the accelerating negative impact of heightened market uncertainty on
equity performance.

• Unemployment Rate (squared):
A 1-point increase in the unemployment rate results in an estimated +0.2800% change in monthly
returns. While this may appear counterintuitive, it likely captures investor anticipation of accom-
modative policy responses during labor market distress, which can buoy markets in the short term.

• Industrial Production (YoY growth):
A 1-point increase in year-over-year industrial production growth corresponds to a −0.1317% change
in monthly returns. This negative marginal effect supports a U-shaped relationship, described by
the marginal effect formula:

𝜕(Monthly Return)
𝜕(INDPRO_YoY) = 𝛽INDPRO_YoY + 2 × 𝛽INDPRO_YoY2 × INDPRO_YoY

Here, the positive coefficient on the squared term implies that for small values of INDPRO_YoY, the
derivative is negative, but as INDPRO_YoY increases, the marginal effect eventually becomes positive.
This captures how modest growth may signal economic fragility, while stronger growth reflects
sustainable expansion, reinforcing a U-shaped dynamic.

43

• Fed Tightening:
During Federal Reserve tightening periods, monthly returns are expected to decline by −0.9217%,
consistent with historical patterns of monetary contraction weighing on asset prices.

These marginal effects provide actionable insights into how macroeconomic indicators influence market be-
havior, particularly under the non-linear dynamics captured by squared terms.

3.9.3 Average Marginal Effects Using Margins Package

We use the margins package to calculate average marginal effects across all observations, providing a com-
prehensive view of variable impacts.

Calculate average marginal effects using margins package
library(margins)

The margins package automatically handles derivatives for complex functional forms
m_effects <- margins(model_transform)
marginal_summary <- summary(m_effects)

Display results
kable(marginal_summary, digits = 4, caption = "Average Marginal Effects")

Table 21: Average Marginal Effects

factor AME SE z p lower upper
INDPRO_YoY -0.1317 0.0590 -2.2332 0.0255 -0.2473 -0.0161
tightening -0.9217 0.4214 -2.1873 0.0287 -1.7477 -0.0958
UNRATE 0.2800 0.1021 2.7427 0.0061 0.0799 0.4801
VIXCLS -0.2672 0.0249 -10.7112 0.0000 -0.3161 -0.2183

Create marginal effects plot
plot(m_effects, main = "Average Marginal Effects with 95% Confidence Intervals",

xlab = "Average Marginal Effect (%)")

44

−1.5

−1.0

−0.5

0.0

0.5

Average Marginal Effects with 95% Confidence Intervals

Average Marginal Effect (%)

A
ve

ra
ge

 M
ar

gi
na

l E
ffe

ct

VIXCLS UNRATE INDPRO_YoY tightening

The average marginal effects provide a single summary measure for each variable’s impact across the entire
sample, accounting for the non-linear functional forms in our model.

3.9.4 Marginal Effects Across Variable Ranges

To fully understand the non-linear relationships, we examine how marginal effects vary across the observed
ranges of each variable.

Create ranges for each variable
vix_range <- seq(min(final_analysis_data$VIXCLS, na.rm = TRUE),

max(final_analysis_data$VIXCLS, na.rm = TRUE),
length.out = 100)

unrate_range <- seq(min(final_analysis_data$UNRATE, na.rm = TRUE),
max(final_analysis_data$UNRATE, na.rm = TRUE),
length.out = 100)

indpro_range <- seq(min(final_analysis_data$INDPRO_YoY, na.rm = TRUE),
max(final_analysis_data$INDPRO_YoY, na.rm = TRUE),
length.out = 100)

Calculate marginal effects across ranges
vix_marginal_effects <- 2 * coefs["I(VIXCLS^2)"] * vix_range
unrate_marginal_effects <- 2 * coefs["I(UNRATE^2)"] * unrate_range
indpro_marginal_effects <- coefs["INDPRO_YoY"] + 2 * coefs["I(INDPRO_YoY^2)"] * indpro_range

Create individual marginal effect plots
p1 <- ggplot(data.frame(VIX = vix_range, Marginal_Effect = vix_marginal_effects),

aes(x = VIX, y = Marginal_Effect)) +

45

geom_line(color = "#E31A1C", size = 1.2) +
geom_hline(yintercept = 0, linetype = "dashed", color = "gray50") +
labs(title = "Marginal Effect of VIX",

x = "VIX Level", y = "Marginal Effect (%)") +
theme_minimal()

p2 <- ggplot(data.frame(UNRATE = unrate_range, Marginal_Effect = unrate_marginal_effects),
aes(x = UNRATE, y = Marginal_Effect)) +

geom_line(color = "#1F78B4", size = 1.2) +
geom_hline(yintercept = 0, linetype = "dashed", color = "gray50") +
labs(title = "Marginal Effect of Unemployment",

x = "Unemployment Rate (%)", y = "Marginal Effect (%)") +
theme_minimal()

p3 <- ggplot(data.frame(INDPRO = indpro_range, Marginal_Effect = indpro_marginal_effects),
aes(x = INDPRO, y = Marginal_Effect)) +

geom_line(color = "#33A02C", size = 1.2) +
geom_hline(yintercept = 0, linetype = "dashed", color = "gray50") +
labs(title = "Marginal Effect of Industrial Production",

x = "Industrial Production YoY Growth (%)", y = "Marginal Effect (%)") +
theme_minimal()

Display plots
grid.arrange(p1, p2, p3, ncol = 2, nrow = 2,

top = "Marginal Effects Across Variable Ranges")

−0.6

−0.4

−0.2

0.0

10 20 30 40
VIX Level

M
ar

gi
na

l E
ffe

ct
 (

%
)

Marginal Effect of VIX

0.0

0.2

0.4

0.6

3 6 9 12 15
Unemployment Rate (%)

M
ar

gi
na

l E
ffe

ct
 (

%
)

Marginal Effect of Unemployment

−0.5

0.0

0.5

−10 0 10
Industrial Production YoY Growth (%)

M
ar

gi
na

l E
ffe

ct
 (

%
)

Marginal Effect of Industrial Production

Marginal Effects Across Variable Ranges

The plot below visualizes how the marginal effect of each predictor evolves across different values, highlighting
their non-linear impacts on monthly market returns:

46

• VIX (Volatility Index):
The marginal effect becomes more negative as VIX increases, demonstrating an accelerating detri-
mental impact of market uncertainty on returns. This curvature confirms that volatility shocks have
disproportionately larger effects in already turbulent environments.

• Unemployment Rate:
The effect becomes increasingly negative at higher levels of unemployment. Although the average
marginal effect was positive (possibly due to expectations of policy easing), this plot shows that beyond
a certain point, elevated unemployment significantly dampens market performance—consistent with
recessionary concerns.

• Industrial Production (YoY Growth):
A U-shaped relationship emerges. Moderate increases in production growth exhibit a negative
marginal effect, possibly interpreted as signs of overheating or inflation risk. Conversely, both very
low and very high production growth rates correspond with positive effects, suggesting that small
contractions may reflect short-term weakness while strong growth signals healthy economic expansion.

These plots emphasize the value of modeling macroeconomic indicators with quadratic terms to capture
the complex and range-dependent behaviors that are often missed in purely linear specifications.

4. Conclusion

This study successfully identified key macroeconomic drivers of S&P 500 returns through a rigorous econo-
metric analysis combining Boruta feature selection with multiple regression modeling. Our comprehensive
examination of over 15 potential predictors, spanning the period from January 2000 to March 2025, yields
several important insights into the relationship between macroeconomic conditions and equity market per-
formance.

4.1 Summary of Overall Findings

Our analysis identified a parsimonious yet robust model that explains approximately 30% of the variation in
monthly S&P 500 returns using five key macroeconomic indicators. The final transformed model incorporates
non-linear relationships through squared terms, capturing accelerating effects that would be missed in purely
linear specifications. The model demonstrates superior predictive performance compared to alternative
specifications and satisfies key econometric assumptions, providing a reliable foundation for inference.

4.2 Explicit Answers to Research Questions

Which macroeconomic indicators are most statistically significant in predicting S&P 500 re-
turns?

The Boruta algorithm and subsequent modeling identified five statistically significant predictors, listed in
order of importance:

• VIX Volatility Index (importance: 18.332): The most powerful predictor, with a squared term
capturing accelerating negative effects of market uncertainty.

• Industrial Production Index (importance: 6.036): Both linear and quadratic terms significant,
revealing a U-shaped relationship.

• AAA Corporate Bond Yields (importance: 5.81): Reflecting credit market conditions.
• Consumer Price Index (importance: 4.588): Capturing inflationary pressures.
• Federal Funds Rate (importance: 4.733): Representing monetary policy stance.

47

Notably, traditional yield curve measures (10Y-2Y spread) were not selected by our algorithm, suggesting
that direct volatility and real activity measures provide superior predictive power for equity returns.

How do factor variables improve model fit?
The factor variables provide meaningful but modest improvements to model explanatory power:

• Fed Tightening Dummy: Highly significant (p = 0.0295) with an economically substantial effect
of −0.92% during tightening periods, confirming that monetary policy cycles have systematic impacts
on equity returns beyond what’s captured by the level of interest rates alone.

• NBER Recession Indicator: While not individually significant in t-tests (p = 0.22), it contributes
to the overall model framework by capturing discrete regime changes that pure quantitative variables
might miss.

What are the economic magnitudes and interpretations of these relationships?
Our marginal effects analysis reveals economically meaningful relationships with important non-linear dy-
namics:

• VIX (Market Volatility): A 1-point increase in VIX reduces monthly returns by −0.27% on average,
with accelerating negative effects at higher volatility levels. This quadratic relationship confirms that
volatility shocks have disproportionately larger impacts during already turbulent market conditions.

• Industrial Production: Exhibits a U-shaped relationship where moderate growth rates have negative
marginal effects (−0.13% per percentage point), possibly reflecting overheating concerns, while both
very low and very high growth correspond to positive effects. This captures the complex relationship
between real economic activity and market performance across different phases of the business cycle.

• Unemployment Rate: Shows a positive average marginal effect (+0.28% per percentage point),
likely reflecting investor anticipation of accommodative policy responses during labor market distress.
However, the squared term indicates this relationship becomes increasingly negative at very high un-
employment levels.

• Federal Funds Rate & Tightening: Beyond the level effect captured by FEDFUNDS, discrete
tightening periods are associated with an additional −0.92% monthly return impact, highlighting the
importance of policy direction versus level.

4.3 Main Conclusions and Policy Implications

Market Volatility as the Dominant Driver
Our findings confirm that market sentiment and uncertainty, as measured by VIX, represent the most
powerful systematic driver of equity returns. The non-linear specification reveals that volatility’s impact
accelerates during stressed conditions, suggesting that risk management and volatility forecasting should be
central to investment strategy.

Real Economic Activity Shows Complex Dynamics
The U-shaped relationship between industrial production and returns challenges simple narratives about
economic growth and market performance. This suggests that investors differentiate between weak growth
(potentially signaling recession risk), moderate growth (potentially signaling overheating), and strong growth
(signaling sustainable expansion). Portfolio strategies should account for these regime-dependent relation-
ships.

Monetary Policy Transmission is Multi-Dimensional
Our results indicate that monetary policy affects markets through multiple channels: the level of interest rates
(FEDFUNDS), discrete regime changes (tightening dummy), and indirect effects through credit conditions
(AAA yields). This multi-faceted transmission mechanism suggests that investment strategies should monitor
both policy levels and policy direction.

48

4.4 Model Limitations and Future Research

While our model explains 30% of return variation—substantial for monthly equity return prediction—the
negative cross-validated R² values highlight the inherent difficulty of predicting highly volatile financial
markets. The presence of heteroskedasticity and autocorrelation, while not invalidating our results, suggests
that more sophisticated time-series techniques could enhance the analysis.

4.5 Practical Recommendations

For Portfolio Management:

• Volatility Monitoring: Given VIX’s dominant predictive power, systematic volatility forecasting should
be integrated into portfolio allocation decisions.

• Regime Awareness: The non-linear relationships identified suggest that traditional linear factor models
may miss important regime-dependent dynamics.

• Policy Cycle Timing: The significant Fed tightening effect supports incorporating monetary policy
cycle analysis into investment timing decisions.

For Risk Management:

• Non-Linear Risk Models: The accelerating negative effects of volatility suggest that risk models should
incorporate non-linear relationships rather than assuming constant factor sensitivities.

• Macro Integration: The strong predictive power of real economic indicators supports integrating
macroeconomic analysis into systematic risk management frameworks.

For Economic Analysis:

• Leading Indicators: The superior performance of VIX over traditional leading indicators suggests that
market-based measures may provide more timely signals of economic conditions.

• Policy Assessment: The multi-dimensional monetary policy effects identified provide a framework for
assessing the market impact of Federal Reserve actions.

This analysis demonstrates that while predicting short-term equity returns remains challenging, systematic
relationships between macroeconomic conditions and market performance can be identified and quantified.
The non-linear dynamics uncovered through our transformed model specification provide valuable insights
into how these relationships evolve across different economic environments, offering both theoretical insights
and practical guidance for investment and policy decision-making.

References

• Federal Reserve Economic Data (FRED). Federal Reserve Bank of St. Louis. Retrieved from https:
//fred.stlouisfed.org/

• Yahoo Finance. S&P 500 Historical Data. Retrieved from https://finance.yahoo.com/

• National Bureau of Economic Research (NBER). US Business Cycle Expansions and Contractions.
Retrieved from https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions

49

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
https://finance.yahoo.com/
https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions

	Introduction
	1. Variable Selection
	1.1 Quantitative Predictors via Boruta
	1.1.1 Final Variable Selection from Boruta Results

	1.2 Selection of Factor Variables

	2. Descriptive Analysis
	2.1 Data Quality Assessment
	2.2 Outlier Detection and Treatment
	2.3 Univariate Distributional Analysis
	2.4 Distribution Plots with Fitted Normal Curves
	2.5 Normality Assessment via Q-Q Plots
	2.6 Transformation Analysis
	2.7 Correlation Analysis
	2.8 Factor Variable Analysis
	2.9 Time Series Visualization
	2.10 Descriptive Analysis Summary

	3. Model Building
	3.1 Model Specifications and Initial Setup
	3.2 Initial Model Comparison
	3.3 Testing for Interaction Terms
	3.3.1 Continuous Variable Interactions
	3.3.2 Factor Variable Interactions
	3.3.3 Interaction Analysis and Multicollinearity Concerns

	3.4 Model Diagnostic & Plots
	3.4.1 Normality of Residuals
	3.4.2 Heteroskedasticity Analysis
	3.4.3 Autocorrelation Testing
	3.4.4 Model Specification Testing
	3.4.5 Multicollinearity Analysis
	3.4.6 Influential Observations Analysis

	3.6 Cross-Validation Analysis
	3.6.1 Time Series Cross-Validation Setup
	3.6.2 Cross-Validation Results

	3.7 Bootstrap Analysis for Coefficient Stability
	3.7.1 Bootstrap Implementation
	3.7.2 Bootstrap Histograms

	3.8 Final Model Selection
	3.8.1 Comprehensive Comparison
	3.8.2 Model Selection Decision

	3.9 Marginal Effects Analysis
	3.9.1 Theoretical Foundation
	3.9.2 Marginal Effects at Mean Values
	3.9.3 Average Marginal Effects Using Margins Package
	3.9.4 Marginal Effects Across Variable Ranges

	4. Conclusion
	4.1 Summary of Overall Findings
	4.2 Explicit Answers to Research Questions
	4.3 Main Conclusions and Policy Implications
	4.4 Model Limitations and Future Research
	4.5 Practical Recommendations

	References

